Abstract

The recent emergence of highly pathogenic avian influenza A virus strains with subtype H5N1 pose a global threat to human health. Elucidation of the underlying mechanisms of viral replication is critical for development of anti-influenza virus drugs. The influenza RNA-dependent RNA polymerase (RdRp) heterotrimer has crucial roles in viral RNA replication and transcription. It contains three proteins: PA, PB1 and PB2. PB1 harbours polymerase and endonuclease activities and PB2 is responsible for cap binding; PA is implicated in RNA replication and proteolytic activity, although its function is less clearly defined. Here we report the 2.9 ångström structure of avian H5N1 influenza A virus PA (PA(C), residues 257-716) in complex with the PA-binding region of PB1 (PB1(N), residues 1-25). PA(C) has a fold resembling a dragon's head with PB1(N) clamped into its open 'jaws'. PB1(N) is a known inhibitor that blocks assembly of the polymerase heterotrimer and abolishes viral replication. Our structure provides details for the binding of PB1(N) to PA(C) at the atomic level, demonstrating a potential target for novel anti-influenza therapeutics. We also discuss a potential nucleotide binding site and the roles of some known residues involved in polymerase activity. Furthermore, to explore the role of PA in viral replication and transcription, we propose a model for the influenza RdRp heterotrimer by comparing PA(C) with the lambda3 reovirus polymerase structure, and docking the PA(C) structure into an available low resolution electron microscopy map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.