Abstract
FIC domain proteins mediate post-translational modifications of target proteins, which typically results in their inactivation. Depending on the conservation of crucial active site residues, the FIC fold serves as structural scaffold for various enzymatic activities, mostly target adenylylation. The founding member of the vast Fic protein family, EcFicT, was identified in Escherichia coli some time ago. The G55R point mutant of EcFicT displays the “filamentation induced by cAMP” (Fic) phenotype at high 3',5'-cyclic adenosine monophosphate (cAMP) concentrations and elevated temperature, but the underlying molecular mechanism and any putative biochemical activity of EcFicT have remained unknown. EcFicT belongs to class I Fic toxin proteins that are encoded together with a small inhibitory protein (antitoxin), named EcFicA in E. coli. Here, we report the crystal structures of two mutant EcFicT/EcFicA complexes (EcFicTG55RA and EcFicTAE28G) both showing close resemblance with the structure of the AMP-transferase VbhT from Bartonella schoenbuchensis in complex with its cognate antitoxin VbhA. However, crucial differences in the active site of EcFicT compared to VbhT and other AMP-transferases rationalize the lack of evidence for adenylylation activity. Comprehensive bioinformatic analysis suggests that EcFicT has evolved from canonical AMP-transferases and has acquired a conserved binding site for a yet to be discovered novel substrate. The G55R mutation has no effect on structure or thermal stability of EcFicT, such that the molecular basis for its associated Fic phenotype remains elusive. We anticipate that this structure will inspire further bioinformatic and experimental analyses in order to characterize the enzymatic activity of EcFicT and help revealing its physiological role.
Highlights
Filamentation induced by cyclic adenosine monophosphate (cAMP) (Fic) was discovered in the early 1980s by Utsumi et al [1] as a phenotype caused by the temperature sensitive allele fic-1 of the fic gene of Escherichia coli
Size exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS) analyses revealed that all investigated constructs—wild-type EcFicTwt/EcFicAwt complex (EcFicTA), single mutants EcFicTG55R/EcFicAwt (EcFicTG55RA) and EcFicT/EcFicAE28G (EcFicTAE28G), and double mutant EcFicTG55R/EcFicAE28G (EcFicTG55RAE28G)—form a stable 1:1 complex, with a molecular mass between 32.1 kDa to 32.9 kDa, which closely corresponds to the theoretical mass of 33.4 kDa (Fig 1A)
Purified EcFicTA complexes were subjected to differential scanning fluorimetry (DSF) to determine their melting temperature (Tm)
Summary
Filamentation induced by cAMP (Fic) was discovered in the early 1980s by Utsumi et al [1] as a phenotype caused by the temperature sensitive allele fic-1 of the fic gene of Escherichia coli. The G55R mutation encoded by the fic-1 allele caused cell filamentation at non-permissive temperature (43°C) in the presence of high concentration of cAMP (1.5 mM) in the culture medium [2,3,4,5]. In their reports, they showed that knock-out strains of the fic gene were viable as wild-type. Bacteria expressing the fic-1 allele (G55R) displayed a filamentation phenotype, suggesting a gain of function mutation [3,4]. The biochemical function of the E. coli Fic protein remained unclear
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have