Abstract

N-glycosylation on IgG modulates Fc conformation and effector functions. An IgG-Fc contains a human sialo-complex type (hSCT) glycan of biantennary structure with two α2,6-sialylations and without core-fucosylation is an optimized glycoform developed to enhance the antibody dependent cellular cytotoxicity (ADCC). hSCT modification not only enhances the binding affinity to Fc receptors in the presence of antigen but also in some cases provides gain-of-function effector activity. We used enzymatic glyco-engineering to prepare an IgG-Fc with homogeneous hSCT attached to each CH2 domain and solved its crystal structure. A compact form and an open form were observed in an asymmetric unit in the crystal. In the compact structure, the double glycan latches from the two hSCT chains stabilize the CH2 domains in a closed conformation. In the open structure, the terminal sialic acid (N-acetylneuraminic acid or NeuNAc) residue interacts through water-mediated hydrogen bonds with the D249-L251 helix, to modulate the pivot region of the CH2-CH3 interface. The double glycan latches and the sialic acid modulation may be mutually exclusive. This is the first crystal structure of glyco-engineered Fc with enhanced effector activities. This work provides insights into the relationship between the structural stability and effector functions affected by hSCT modification and the development of better antibodies for therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.