Abstract

Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

Highlights

  • IntroductionThe interstratified nature of aluminized vermiculite has been described in literature previously, no clear quantitative relationship between the crystal structure and the mobility of Cs+ has been established up to now

  • Vermiculite, and hydroxy-interlayered (HI) layers[27,28,29,30,31,32,33,34]

  • The experimental aluminization of natural vermiculite performed in this work accurately represents the mechanisms encountered in a natural weathering context due to presence of dissolution, cation exchange and aluminium fixation (Fig. 1)

Read more

Summary

Introduction

The interstratified nature of aluminized vermiculite has been described in literature previously, no clear quantitative relationship between the crystal structure and the mobility of Cs+ has been established up to now. We propose a crystal structure model of laboratory-weathered vermiculite under acidic conditions, taking into account the actual interstratified nature of the layers. This quantitative structural description is used to provide a physical mechanistic model of Cs+ mobility in aluminized vermiculite. The model is based on the relative proportions of vermiculite and HI layers in the crystals and on their respective Cs+ extractability as determined from the combined use of XRD profile modelling and chemical measurements

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.