Abstract

Here we present the synthesis, structure and magnetic properties of complexes of general formula (Mn)(Me2NH2)4][Mn3(μ-L)6(H2O)6] and (Me2NH2)6[M3(μ-L)6(H2O)6] (M = CoII, NiII and CuII); L−2 = 4-(1,2,4-triazol-4-yl) ethanedisulfonate). The trinuclear polyanions were isolated as dimethylammonium salts, and their crystal structures determined by single crystal and powder X-ray diffraction data. The polyanionic part of these salts have the same molecular structure, which consists of a linear array of metal(II) ions linked by triple N1-N2-triazole bridges. In turn, the composition and crystal packing of the MnII salt differs from the rest of the complexes (with six dimethyl ammonia as countercations) in containing one Mn+2 and four dimethyl ammonia as countercations. Magnetic data indicate dominant intramolecular antiferromagnetic interactions stabilizing a paramagnetic ground state. Susceptibility data have been successfully modeled with a simple isotropic Hamiltonian for a centrosymmetric linear trimer, H = −2J (S1S2 + S2S3) with super-exchange parameters J = −0.4 K for MnII, −7.5 K for NiII and −45 K for CuII complex. The magnetic properties of these complexes and their easy processing opens unique possibilities for their incorporation as magnetic molecular probes into such hybrid materials as magnetic/conducting multifunctional materials or as dopant for organic conducting polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.