Abstract
Highly textured Ba2Bi4Ti5O18 ceramic was prepared by spark plasma sintering (SPS). X-ray diffraction of the ceramics revealed the coexistence of a major ferroelectric phase (Space group, SG: B2cb) and a minor paraelectric phase (SG: I4/mmm) at room temperature. A diffused phase transition was observed at around 240 °C. The evolution of the switching current peaks in the electric current vs. electric field (I-E) loops with increasing temperature was interpreted by the structural changes and temperature dependent polarisation reversal processes. The slim polarisation vs. electric field (P-E) loops, the extra switching current peaks in the I-E loops and the non-zero piezoelectric d33 coefficient indicate that Ba2Bi4Ti5O18 is a relaxor ferroelectric material. The recoverable energy density (0.41 ± 0.01 J/cm3) of Ba2Bi4Ti5O18 ceramics in the perpendicular direction to the SPS pressing direction is close to that of Pb(Mg1/3Nb2/3)O3-based ceramics. The obtained results suggest Ba2Bi4Ti5O18 ceramics might be promising for energy storage applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have