Abstract
Organic-inorganic hybrid formamidinium lead iodide (FAPbI3) perovskite has shown tremendous attention in recently developed photovoltaics and optelectronic devices. However, it suffers from structural instability complications, particularly the spontaneous phase transition from a dark color photoactive perovskite phase (α-FAPbI3) to a yellow color photo-inactive phase (δ-FAPbI3) at room temperature. To stabilize the photoactive α-FAPbI3, several methods were employed, including compositional engineering, 2D layer deposition on the surface, and solvent engineering method. In this communication, we have proposed a facile sequential rapid annealing method to produce the photoactive α-FAPbI3 perovskite on an industrial scale, which is highly stable at room temperature. The structural, morphological, compositional, and optical properties of the perovskite were studied using X-ray diffraction (XRD), UV–visible absorption, Laser Raman, thermogravimetric analysis (TGA), and field emission electron microscopy with elemental analysis (FE-SEM & EDAX). The strong characteristic diffraction peaks of cubic structure in XRD showed the proposed additives free preparation method is more adaptable for the preparation of high quality α-FAPbI3 perovskite for optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.