Abstract

Crystal plasticity finite element method based on a representative volume element model, which includes the effect of grain shape and size, is combined with electron backscattered diffraction experiment in order to investigate plastic deformation of NiTi shape memory alloy during uniaxial compression at 400 °C. Simulation results indicate that the constructed representation of the polycrystal microstructure is able to effectively simulate macroscopically global stress-strain response and microscopically inhomogeneous microstructure evolution in the case of various loading directions. According to slip activity and Schmid factor in {110} , {010} and {110} slip modes, slip modes are found to play a dominant role in plastic deformation, while slip mode is found to be a secondary slip mode. In addition, the simulation results are supported well by the experimental ones. With the progression of plastic deformation, the (001) [ $$0\bar 10$$ ] texture component gradually disappears, while the γ-fiber ( ) texture is increasingly enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.