Abstract

A crystal plasticity model based on Electron Backscatter Diffraction (EBSD) experimental data has been developed to simulate the tensile behavior of additively manufactured TiAl alloys at various temperatures. To accurately capture the activity of different slip systems and their contribution to the material's plasticity, multiple slip systems across different phases are considered. The validity of the model is verified by comparing the simulation results, such as microscopic properties, with experimental and test data. Additionally, a continuous damage model is incorporated to analyze the damage behavior of additively manufactured TiAl alloys at different temperatures. Compared to experimental data, the crystal plasticity model incorporating damage effectively simulates the tensile failure behavior of TiAl alloys across a range of temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.