Abstract
This study investigates the temperature-dependent dwell fatigue behavior of Ti-6Al-4V alloy using crystal plasticity finite element method. The dislocation mechanism-based crystal plasticity parameters are calibrated with the data of quasi-static tensile and constant load creep tests at ambient and intermediate temperatures. In particular, the rate-dependent parameters related to slip property are employed to establish the relationship between strain rate sensitivity of a soft α-titanium single crystal and temperature. The variation of strain rate sensitivity with temperature influences the stress redistribution occurring within the hard-soft grain combination, which in turn affects the dwell fatigue sensitivity. Further, the structural analysis for a Ti-6Al-4V fan disc provides the stress fields at takeoff and cruise phases to examine the in-service stress redistribution. The highly localized hoop stress and presence of large macrozones at the bore of the fan disc, rather than the fair rate sensitivity of soft macrozones at working temperatures, are responsible for triggering basal stress enhancement and dwell facet nucleation in hard macrozones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.