Abstract

In heterogeneous persulfate-catalyzed oxidation systems, the mechanism underlying the crystal plane effects of the catalyst on the selective conversion of reactive oxygen species (ROS) remains ambiguous. In this study, nano-Co3O4 catalysts with varying crystallinity and exposure levels of (111) crystal planes are prepared via a hydrothermal method. Compared to low crystalline catalysts, high crystallinity catalysts predominantly expose (111) planes containing higher concentrations of Co2+ and oxygen vacancies (Ov), resulting in an increase degradation efficiency of p-nitrobenzaldehyde (4-NBA) from 74.5% to 100%. Radical quenching experiments and EPR characterization reveal that the degradation of 4-NBA occurs through a radical pathway, and quantification of radicals demonstrates that increasing exposure levels of (111) planes effectively promote radical yield (CSO4•- increase from 18.2 to 172.8 µm and C•OH increase from 1 to 58.9 µm). Furthermore, XPS and DFT calculations indicate that high crystallinity catalyst possesses more Ov active sites on (111) planes. The presence of Ov not only facilitates the adsorption of PMS molecules but also enhances electron transfer from Co2+ to PMS, leading to directed formation and efficient transformation of radicals. This study presents a novel strategy for promoting efficient radical formation in persulfate-activated systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.