Abstract
Some new insights into traditional metal pretreatment of anticorrosion for high stable Zn metal anodes are provided. A developed pretreatment methodology is employed to prefer the crystal plane of polycrystalline Zn and create 3.26µm protective coatings mainly consisting of organic polymers and zinc salts on Zn foils (ROZ@Zn). In this process, Zn metal exhibits a surface-preferred (001) crystal plane proved by electron backscattered diffraction. Preferred (001) crystal planes and ROZ coatings can regulate Zn2+ diffusion, promote flat growth of Zn, and prevent side reactions. As a result, ROZ@Zn symmetrical cells exhibit superior plating/stripping performance over 1300h. Impressively, it is significantly prolonged over 40times in comparison to the bare Zn symmetric cell at 5mAcm-2 . Moreover, Zn//MnO2 button cells have a high capacity retention of 96.3% after 1600cycles and pouch cells have a high capacity 122mAhg-1 after 200cycle at 5C. This work provides inspiration for high stable aqueous Zn metal batteries using the developed metal pretreatment of anticorrosion, which will be a viable, low-cost, and efficient technology. More interesting, it demonstrates the availability of reconstructing crystal planes by the largely heterogeneous reaction activation of the different crystal planes to H+ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.