Abstract

Low-sensitivity and high-energy explosives (LSHEs) are highly desired for their comprehensive superiority of safety and energy. Crystal packing is crucial to both the safety and energy, and therefore becomes of interest in energetic crystal engineering. This work carries out systemic analyses on the crystal packing of 11 existing LSHEs with both energy and safety close or superior to TNT. As a result, we find that the LSHE crystals wholly feature π–π stacking with the aid of intermolecular hydrogen bonding. Each LSHE molecule is π-bonded with a big conjugated structure composed of all non-hydrogen atoms in the entire molecule. Intramolecular hydrogen bonding exists in most LSHE molecules with strongly active hydrogen bond (HB) donors of amino and hydroxyl groups, and various strength. These big π-conjugated structures and intramolecular HBs lead to planar molecules with high stability, settling a base of π–π stacking in crystals. With the help of intermolecular HBs, the π–π stacking holding the LSHE cryst...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call