Abstract

AbstractThe crystal morphology and nonisothermal crystallization kinetics of short carbon fiber/poly(trimethylene terephthalate) (SCF/PTT) composites were investigated by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The optical micrographs suggest that the more content of SCF in composites, the smaller size of the spherulites is. Moreover, the addition of SCF can lead to forming banded spherulites in composites. The Avrami equation modified by Jeziorny, Ozawa theory and the method developed by Mo were used, respectively, to fit the primary stage of nonisothermal crystallization of various composites. The results suggest that the SCF served as nucleation agent, accelerates the crystallization rate of the composites, and the more content of SCF, the faster crystallization rate is. Effective activation energy calculated by the differential iso‐conversional method developed by Friedman also concludes that the composite with more SCF component has higher crystallization ability than that with less SCF content. The kinetic parameters U* and Kg are determined, respectively, by the Hoffman–Lauritzen theory. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.