Abstract

The morphology of crystals, isothermal and non-isothermal crystallization of poly(methylene terephthalate) (PMT) have been investigated by using polarized optical microscopy and differential scanning calorimeter (DSC). The POM photographs displayed only several Maltese cross at the beginning short time of crystallization indicating that some spherulites had been formed. The crystal cell belonged to the Triclinic crystal systems and the cell dimensions were calculated from the WAXD pattern. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallization. The Ozawa theory was also used to analyze the primary stage of non-isothermal crystallization. The Avrami exponents n were evaluated to be in the range of 2–3 for isothermal crystallization, and 3–4 for non-isothermal crystallization. The Ozawa exponents m were evaluated to be in the range of 1–3 for non-isothermal crystallization in the range of 135–155 °C. The crystallization activation energy was calculated to be −78.8 kJ/mol and −94.5 kJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius’ formula and the Kissinger’s methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call