Abstract

In order to improve a critical current density ( J c) under applied magnetic fields, an addition of BaMO 3 (BMO; M = Zr, Sn) nanorods into REBa 2Cu 3O y (REBCO) films is actively discussed. Although superconducting properties of the REBCO films are dramatically enhanced by self-assembled BMO nanorods, the growth mechanisms of the BMO nanorods have not been clarified yet. In this study, in order to clarify the growth mechanisms of the BZrO 3 (BZO) nanorods and to further improve the superconducting properties, we fabricated a BZO-doped Sm 1+ x Ba 2− x Cu 3O y (Sm+BZO) film by using modified Vapor–Liquid–Solid (VLS) technique (VLS-Sm+BZO/i). The in-field J c of the VLS-Sm+BZO/i film showed 4.5 times higher than that of Sm+BZO film fabricated by conventional pulsed laser deposition method (PLD-Sm+BZO) at B = 4 T and the J c– B– θ curves of the VLS-Sm+BZO/i film was higher than that of the PLD-Sm+BZO film around the applied field angle of 40° against the c-axis of the SmBCO. From a TEM observation, we found that the BZO nanorods of VLS-Sm+BZO/i film grew discontinuously along the c-axis of the SmBCO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.