Abstract

Transition metal chalcogenides have shown great potential for the applications in high performance optoelectronic devices. Here, we demonstrate for the first time the growth of V0.75W0.25Se2 van der Waals ternary alloy and its application in high performance photodetection. The crystals of V0.75W0.25Se2 were grown by direct vapour transport technique and chemical composition was confirmed by EDAX. The powder XRD results reveal the good crystallinity of grown samples, exhibits hexagonal lattice structure with P63/mmc space group. The XRD pattern also reveals the presence of 1T–VSe2 secondary phase. The SEM and TEM analysis are also carried out for structural analysis. The optical response, studied by photoluminescence spectroscopy discloses the various excitonic mechanisms of V0.75W0.25Se2 ternary alloy. The results of Raman spectroscopy discloses the presence of A1g and E2g modes of vibration and confirms the 2H-poly-type of grown V0.75W0.25Se2 ternary compound. The moderately fast time-resolved photoresponse is demonstrated under 670 nm laser light of power intensity 3 mW cm−2 at 0.3 V bias voltage. The quantitative analysis of performance was carried out from the determined detector parameters such as response time, photo-responsivity, external quantum efficiency and detectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.