Abstract
High-entropy aluminum garnets were grown as bulk single crystals using the micro-pulling-down method, taking the synthesis of complex ceramics a step further from the conventional preparation of polycrystalline materials. We studied the effects of growth parameters on the elemental distribution in high optical quality crystals of (Lu1/6Y1/6Ho1/6Dy1/6Tb1/6Gd1/6)3Al5O12 containing six cations (yttrium and rare-earths) taken in equimolar amounts. A single garnet structure was confirmed by powder X-ray diffraction. Electron microprobe measurements were obtained to correlate the radial distribution of rare-earth elements with pulling rates and molten zone height. The nature of the elemental distribution in the radial direction was associated with ionic radius: smaller rare-earths concentrated in the center of the crystal, while larger rare-earths segregated toward the outer edge of the cylindrical crystal. Faster pulling rates led to a flattening of the concentration profiles toward the nominal concentration, promoting a more homogeneous radial elemental distribution, while varying the molten zone height did not have a significant effect. The demonstrated success with crystal growth enables the practical availability of single crystals of multicomponent aluminum garnets for further discovery of new phenomena and applications.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.