Abstract
In the present system, Sm3+ activated Ba2BiV3O11 nanomaterial series radiating orange-red light was developed via an efficient approach of solution combustion method. The structural examinations using XRD analysis indicate that the sample is crystallized into the monoclinic phase with the P21/a (14) space group. The elemental composition and morphological conduct were studied via energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) respectively. Also, the formation of nanoparticles was confirmed by transmission electron microscopy (TEM). Photoluminescent (PL) examinations reveal the orange-red emission from the developed nanocrystals via documenting the emission spectra, which reveals the peak at 606nm due to the 4G5/2 → 6H7/2 transition. Further, the decay time, non-radiative rates, quantum efficiency, and band gap of the optimal sample were computed as 1.3263 ms, 219.5s- 1, 70.88%, and 3.41eV respectively. Finally, the chromatic parameters including color - coordinates (0.5565, 0.4426), 1975K color correlated temperature (CCT), and color purity (85.58%) reflected their excellent luminous performance. The above-mentioned outcomes endorsed the relevancy of the developed nanomaterials as a propitious agent in the engineering of advanced illuminating optoelectronic appliances.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have