Abstract

Bi(1−x)RExFeO3 (BREF100x, RE = La, Nd, Sm, Gd) has been investigated with a view to establish a broad overview of their crystal chemistry and domain structure. For x ≤ 0.1, the perovskite phase in all compositions could be indexed according to the rhombohedral, R3c cell of BiFeO3. For Nd and Sm doped compositions with 0.1 0.1, x > 0.15, and x > 0.2 in Gd, Sm, and Nd doped BiFeO3, respectively. For x > 0.2, La doped compositions became pseudocubic at room temperatures but high angle XRD peaks were broad and asymmetric. These compositions have been indexed as the orthoferrite structure. It was concluded therefore that the orthoferrite phase appeared at lower values of x as the RE ferrite, end member tolerance factor decreased. However, the compositional window over which the PbZrO3-like phase was stable increased with increasing end member tolerance factor but was not found as single phase in La doped compositions at room temperature. On heating, the PbZrO3-like phase in BNF20 transformed to the orthoferrite, Pnma structure. TC for all compositions decreased with decreasing A-site, average ionic polarizabilty and tolerance factor. For compositions with R3c symmetry, superstructure and orientational, and translational (antiphase) domains were observed in a manner typical of an antiphase-tilted, ferroelectric perovskite. For the new PbZrO3-like phase orientational domains were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call