Abstract

A comparative study of the crystal and electronic structure and magnetism of divalent europium perovskite oxides EuMO(3) (M = Ti, Zr, and Hf) has been performed on the basis of both experimental and theoretical approaches playing complementary roles. The compounds were synthesized via solid-state reactions. EuZrO(3) and EuHfO(3) have an orthorhombic structure with a space group Pbnm at room temperature contrary to EuTiO(3), which is cubic at room temperature. The optical band gaps of EuZrO(3) and EuHfO(3) are found to be about 2.4 and 2.7 eV, respectively, much larger than that of EuTiO(3) (0.8 eV). On the other hand, the present compounds exhibit similar magnetic properties characterized by paramagnetic-antiferromagnetic transitions at around 5 K, spin flop at moderate magnetic fields lower than 1 T, and the antiferromagnetic nearest-neighbor and ferromagnetic next-nearest-neighbor exchange interactions. First-principles calculations based on a hybrid Hartree-Fock density functional approach yield lattice constants, band gaps, and magnetic interactions in good agreement with those obtained experimentally. The band gap excitations are assigned to electronic transitions from the Eu 4f to Mnd states for EuMO(3) (M = Ti, Zr, and Hf and n = 3, 4, and 5, respectively).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.