Abstract
Bladder cancer is one of the most common human malignancies worldwide. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is crucial to driving malignant progression and predicting poor prognosis of multiple human cancers, including bladder cancer, making STAT3 a promising target of cancer therapeutics. Cryptotanshinone (CTS) is an anticancer ingredient of Danshen (Salvia miltiorrhiza), a top-graded Chinese medicinal herb. However, whether CTS targets STAT3 to exert its cytotoxic effect on human bladder cancer remains unknown. Herein, we demonstrated that CTS is cytotoxic to multiple human urinary bladder transitional cell carcinoma (TCC) cell lines while sparing normal human urothelial cells. CTS provoked apoptosis-dependent bladder TCC cytotoxicity, as apoptosis blockage by z-VAD-fmk markedly rescued the clonogenicity of CTS-treated cells. Besides, CTS was found to suppress constitutive and interleukin 6-inducible activation of STAT3, evidenced by the downregulation of STAT3 tyrosine 705 phosphorylation and BCL2, a recognized STAT3 transcriptional target. Notably, ectopic expression of a dominant-active STAT3 mutant (STAT3-C) or BCL-2 alleviated CTS-induced apoptosis and clonogenicity inhibition, thus confirming STAT3 blockade as a pivotal mechanism of CTS's cytotoxic action on bladder TCC cells. Lastly, immunoblotting revealed that CTS lowered the levels of active JAK2, an upstream kinase that mediates STAT3 tyrosine 705 phosphorylation. Altogether, we conclude that the blockade of the JAK2/STAT3/BCL-2 antiapoptotic signaling axis is a vital mechanism whereby CTS provokes bladder cancer cytotoxicity. The current evidence implicates CTS's potential to be translated into a bladder cancer therapeutic agent.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have