Abstract

We present public-key cryptographic protocols for key exchange, digital signatures, and encryption whose security is based on the presumed intractability of solving the principal ideal problem, or equivalently, the distance problem, in the real model of a hyperelliptic curve. Our protocols represent a significant improvement over existing protocols using real hyperelliptic curves. Theoretical analysis and numerical experiments indicate that they are comparable to the imaginary model in terms of efficiency, and hold much more promise for practical applications than previously believed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.