Abstract

While plasma proteins can influence the physicochemical properties of nanoparticles, the adsorption of protein to the surface of nanomaterials can also alter the structure and function of the protein. Here, we show that plasma proteins form a hard corona around synthetic layered silicate nanoparticles (LSN) and that one of the principle proteins is serum albumin. The protein corona was required for recognition of the nanoparticles by scavenger receptors, a major receptor family associated with the mononuclear phagocyte system (MPS). Albumin alone could direct nanoparticle uptake by human macrophages, which involved class A but not class B scavenger receptors. Upon binding to LSN, albumin unfolded to reveal a cryptic epitope that could also be exposed by heat denaturation. This work provides an understanding of how albumin, and possibly other proteins, can promote nanomaterial recognition by the MPS without albumin requiring chemical modification for scavenger receptor recognition. These findings also demonstrate an additional function for albumin in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call