Abstract

Background and Objectives: To overcome the security flaw of RAPP authentication protocol, Zhuang et al. proposed a novel ultralightweight RFID mutual authentication protocol, called R2AP. In this paper, we first propose a new desynchronization attack against this protocol. Methods: To extract the secret ID, linear cryptanalysis is used, which is a tool mostly for attack block ciphers. Results: Our proposed desynchronization attack succeeds with the probability almost 1 and requires an adversary to initiate 1829 sessions of the protocol with the tag. On the other hand, the protocol updates the tag and the reader secretes to provide the tag holder privacy. However, it is shown that a passive adversary who eavesdrops only two sessions of the protocol can trace the tag with the probability of 0.921. In addition, passive attack for which the adversary can extract the secret ID of the tag is presented assuming that the adversary eavesdropped 128 sessions of the protocol, its success probability would be 0.387. Conclusion: It was shown that R2AP suffers from desynchronization, traceability, and disclosure attacks, where the two later attacks work in passive adversary model.======================================================================================================Copyrights©2018 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.======================================================================================================

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.