Abstract

This paper presents cryptanalysis of a color image encryption scheme. DNA encoding and multiple 1D chaotic maps are used in the encryption process which increases its computational speed. The key streams generated in this scheme are dependent on secret keys, updated using the sum of pixel intensities of plain image of size [Formula: see text]. This paper analyzes the security of encryption scheme against the chosen plaintext attack and finds that only [Formula: see text] different key matrices for diffusion are possible, an equivalent version of which can be revealed with [Formula: see text] chosen plain images. Experimental results are presented to prove that equivalent diffusion keys and block permutation sequence can be effectively revealed through the attack. In addition, low sensitivity of keys towards changes in plaintext along with insecure diffusion process involved in encryption process is also reported. Finally, to remedy the shortcomings of the original encryption scheme, an enhanced encryption scheme is generated that can resist chosen/known plaintext attack while maintaining the merits of the original encryption scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.