Abstract

The study evaluated the effect of cryogrinding, a relatively new, cost-effective, and sustainable mechanical treatment method, on physicochemical properties of two different micronaire (3.6- and 5.3-) cotton fiber cellulose. Native (type I), mercerized (type II), and acidulated cellulose were subjected to cryogrinding for 48 and 96 min, and their physicochemical properties were investigated. The results demonstrated that cryogrinding resulted in partial amorphization of native and mercerized celluloses, particle size decrease, and a slight reduction of T50%. Importantly, degree of polymerization (DP) of native cellulose reduced significantly: more than two-fold after 12 cycles and more than three-fold after 24 cycles of cryogrinding. No difference in properties was found between 3.6- and 5.3-micronaire cellulose. Advantageous impacts of cryogrinding found in this work will help signify the potential of this technique in cellulose processing and enable the identification of areas for future development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.