Abstract

Zinc transporter 8 (ZnT8) is mainly expressed in pancreatic islet β cells and is responsible for H+-coupled uptake (antiport) of Zn2+ into the lumen of insulin secretory granules. Structures of human ZnT8 and its prokaryotic homolog YiiP have provided structural basis for constructing a plausible transport cycle for Zn2+. However, the mechanistic role that protons play in the transport process remains unclear. Here we present a lumen-facing cryo-EM structure of ZnT8 from Xenopus tropicalis (xtZnT8) in the presence of Zn2+ at a luminal pH (5.5). Compared to a Zn2+-bound xtZnT8 structure at a cytosolic pH (7.5), the low-pH structure displays an empty transmembrane Zn2+-binding site with a disrupted coordination geometry. Combined with a Zn2+-binding assay our data suggest that protons may disrupt Zn2+ coordination at the transmembrane Zn2+-binding site in the lumen-facing state, thus facilitating Zn2+ release from ZnT8 into the lumen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call