Abstract

AbstractNew geophysical profiles across the central Dead Sea Transform (DST) near the Sea of Galilee, Israel, and surrounding highlands, augmented by static stress modeling, allow us to study continental transform plate deformation. The DST separates a ∼10 km thick sedimentary column above a thinned (16–23 km) crust to the west from a ∼7 km column above a ∼30‐km thick crust to the east. Crustal thinning starts under the DST, as observed also farther south, indicating that the DST is indeed located along the boundary between the Arabian plate and its continental margin. Moho step here is gradual. The DST's eastern shoulder dips westward toward the DST unlike the upward flexed shoulder observed farther south, perhaps delineating the northern limit of a thinner and hotter lithosphere. The shape of the Sea of Galilee is modeled as an asymmetric pull‐apart basin formed by a left‐lateral stepover of 2.6 km between slightly divergent and underlapping strike‐slip fault strands dipping 70° to the west. Reflection data indicate that these strands are not connected. Several fault traces within the Sea of Galilee have previously been suggested to carry part of the relative plate motion. However, given slip along the main DST faults, Coulomb stress will increase only on fault portions in the northern part of the lake, in accord with the geographical distribution of seismicity, suggesting that these faults are likely secondary. Mismatch between the DST strand locations in the geophysical profiles and the subsidence model, may reflect temporal changes in fault geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.