Abstract

Early Pliocene (Zanclean) basalts in the Dien Bien Phu pull-apart basin in NW Vietnam, associated with the presently sinistral Dien Bien Phu Fault Zone, have been dated by the K–Ar method at 4.4–4.9 and 5.4–5.2 Ma. Rapid migration of basaltic magma to the surface in the Dien Bien Phu Fault Zone may be due to Pliocene transtension of the crust in this region, resulting from asthenospheric upwelling induced by lateral displacement of the mantle. The basalts are moderately phyric ( < 10%) and consist of olivine (hyalosiderite), plagioclase (bytownite–labradorite) and orthopyroxene (bytownite–labradorite) phenocrysts, and a fine-grained crystalline matrix (olivine–hortonolite, plagioclase–labradorite, clinopyroxene–pigeonite and augite, K-feldspar). The presence of Fe-rich olivine and orthopyroxene phenocrysts indicates that the basalts are SiO 2-saturated/oversaturated olivine tholeiites which formed under water-undersaturated conditions. The Dien Bien Phu basalts contain both mantle-derived (pyroxenites, dunites, gabbros) and crustal (sillimanite/mullite + Mg–Fe spinel), wallrock xenoliths, indicative of crustal contamination during the ascent of the basaltic magma. The basalts show selective enrichment in some mobile elements (K, Rb, Sr and Th), a feature considered to be a result of metasomatism. These rocks, classified on the basis of their normative composition as quartz tholeiites, could represent primary olivine tholeiites/basalts, in which the geochemical signatures were modified by the processes of contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call