Abstract

The determination of the electrokinetic properties of crude oil/brine and rock/brine interfaces is necessary to understand and evaluate the low salinity waterflooding (LSWF) effect on wettability alteration and enhanced oil recovery (EOR). The interface properties and characteristics of oil and rock minerals significantly affect LSWF and must be elucidated in detail. Herein, the interaction of crude oil, brine, and rock was studied to elucidate the LSWF effect in carbonate and sandstone reservoirs. A triple-layer surface complexation model was proposed to describe the calcite/brine and kaolinite/brine interfaces and was verified with zeta potential experiments at various pH and calcium, magnesium, and sulphate concentrations. Furthermore, the surface complexation model prediction of zeta potential agreed well with the measured data for the suspension in seawater, formation water, and associated dilutions. The predicted surface potential of crude oil, calcite, and kaolinite was used in Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to estimate the total disjoining pressure as attractive/repulsive forces. The interaction between crude oil and calcite/kaolinite on seawater dilution and in the presence of sulphate in the diluted solution for calcite was evaluated via disjoining pressure. Moreover, the importance of electrokinetic properties on attractive/repulsive forces and the mechanisms for wettability alteration in crude oil-brine-kaolinite due to LSWF as well as in oil-brine-calcite because of sulphate addition are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call