Abstract
The increasing population density in public places necessitates urgent attention to address safety concerns via effective crowd management. In many congested scenarios such as peak-hour subway stations, the utilization of fences to guide crowd movement has become a widely adopted approach to alleviate congestion. This work presents a method that combines crowd simulation and management, focusing on the optimization of the fence layout for efficient crowd guidance. First, a congestion probability social force model (CP-SFM) is introduced to simulate the irrational pedestrians and to evaluate the efficacy of different fence layouts. Second, based on CP-SFM, we are the first to formulate the fence layout problem as an optimization problem with the objective to minimize the congestion of pedestrians in public places. Third, we further propose an ant colony crowd intervention algorithm (ACCI) to optimize the layout of fences. Lastly, we illustrate the performance of proposed ACCI on 18 scenarios including two real-world subway stations. Compared with other optimization methods, ACCI demonstrates promising performance in avoiding crowd congestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.