Abstract

Crowd behavior is a natural phenomenon that can provide valuable insight into the crowd characterization process. Modeling the visual appearance of a large crowd gathering can reveal meaningful information about its dynamics. Parametric modeling can be used to develop efficient and robust crowd monitoring systems. A crowd can be structured or unstructured based on the organization. In this article, crowd characterization has been mapped to a graph classification problem to classify movements based on order parameter ( ϕ ), active force components, and steadiness (Reynolds number). The graphs are constructed from the motion groups obtained using an active Langevin framework. These graphs are processed using a deep graph convolutional neural network for crowd characterization. For experimentation, we have prepared a dataset comprising of videos from popular publicly available datasets and our own recorded videos. The proposed framework has been compared with the latest deep learning-based frameworks in terms of accuracy and area under the curve (AUC). We have obtained a 4%-5% improvement in accuracy and AUC values over the existing frameworks. The insights obtained from the proposed framework can be used for better crowd monitoring and management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call