Abstract
Nowadays, crowd monitoring is a contentious issue. Because of the increasing population and diversity of human activities, crowd scenarios in the real world are becoming more common, demanding the need for an automotive anomaly detection system. Crowd behavior is influenced by the thoughts and attitudes of others around them. An unexpected event can turn a peaceful crowd into a riot. A mechanism based on optical flow must be implemented to compensate for all of these factors. The amount of motion present in two successive frames is estimated using optical flow. It includes information on velocity in the x & y plane, along with magnitude and line of action. By means of “anomalous event” in this paper is quick and sudden dispersal of the crowd. For detecting an event the magnitude of two successive frames should be taken into account followed by estimating a correlation. We expect a high correlation, slight motion, and low rate of change in velocities at non-anomalous events, but as soon as an anomalous event occurs, the correlation begins to decrease with a significant change in velocity and large motion vectors. The methodology was tested on a dataset from the University of Minnesota that included 11 movies from three different circumstances. Almost all anomalous occurrences in videos were successfully detected using this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.