Abstract
This paper first proposes a new type of single-output Chebyshev-polynomial feed-forward neural network (SOCPNN) for pattern classification. A new type of multi-output Chebyshev-polynomial feed-forward neural network (MOCPNN) is then proposed based on such an SOCPNN. Compared with multi-layer perceptron, the proposed SOCPNN and MOCPNN have lower computational complexity and superior performance, substantiated by both theoretical analyses and numerical verifications. In addition, two weight-and-structure-determination (WASD) algorithms, one for the SOCPNN and another for the MOCPNN, are proposed for pattern classification. These WASD algorithms can determine the weights and structures of the proposed neural networks efficiently and automatically. Comparative experimental results based on different real-world classification datasets with and without added noise prove that the proposed SOCPNN and MOCPNN have high accuracy, and that the MOCPNN has strong robustness in pattern classification when equipped with WASD algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.