Abstract
A fuzzy min-max neural network based on data core (DCFMN) is proposed for pattern classification. A new membership function for classifying the neuron of DCFMN is defined in which the noise, the geometric center of the hyperbox, and the data core are considered. Instead of using the contraction process of the FMNN described by Simpson, a kind of overlapped neuron with new membership function based on the data core is proposed and added to neural network to represent the overlapping area of hyperboxes belonging to different classes. Furthermore, some algorithms of online learning and classification are presented according to the structure of DCFMN. DCFMN has strong robustness and high accuracy in classification taking onto account the effect of data core and noise. The performance of DCFMN is checked by some benchmark datasets and compared with some traditional fuzzy neural networks, such as the fuzzy min-max neural network (FMNN), the general FMNN, and the FMNN with compensatory neuron. Finally the pattern classification of a pipeline is evaluated using DCFMN and other classifiers. All the results indicate that the performance of DCFMN is excellent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.