Abstract

Cross-validation has been widely used in the context of statistical linear models and multivariate data analysis. Recently, technological advancements give possibility of collecting new types of data that are in the form of curves. Statistical procedures for analysing these data, which are of infinite dimension, have been provided by functional data analysis. In functional linear regression, using statistical smoothing, estimation of slope and intercept parameters is generally based on functional principal components analysis (FPCA), that allows for finite-dimensional analysis of the problem. The estimators of the slope and intercept parameters in this context, proposed by Hall and Hosseini-Nasab [On properties of functional principal components analysis, J. R. Stat. Soc. Ser. B: Stat. Methodol. 68 (2006), pp. 109–126], are based on FPCA, and depend on a smoothing parameter that can be chosen by cross-validation. The cross-validation criterion, given there, is time-consuming and hard to compute. In this work, we approximate this cross-validation criterion by such another criterion so that we can turn to a multivariate data analysis tool in some sense. Then, we evaluate its performance numerically. We also treat a real dataset, consisting of two variables; temperature and the amount of precipitation, and estimate the regression coefficients for the former variable in a model predicting the latter one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.