Abstract
When prospectively applied for regenerative therapies, human bone-marrow-derived mesenchymal stem cells (hMSCs) interact with the locally residing host cells. With respect to the developmentally particular origin of oral cells, little is known about the putatively discriminative behavioral responses of hMSCs in interaction with various oral cell types, including human alveolar bone osteoblasts (hOAs), periodontal ligament fibroblasts (hPDLs), and gingival fibroblasts (hGFs). To assess the crosstalk between hMSCs and oral cells, interactive cocultures were established by combining well-characterized hMSCs with hOAs, hPDLs, or hGFs, and the behavioral hMSC aspects, that is, proliferation and gene expression, were measured by employing a 5-bromo-2'-deoxyuridine assay and real-time polymerase chain reaction, while apoptosis was quantified by in situ cell death detection kit. hMSCs expressed the typical antigen spectrum lacking CD34, CD45, CD14, CD19, and HLA-DR, while expressing CD73, CD90, and CD105, and could successfully be transformed into adipocytes, osteocytes, and chondrocytes. Monocultured control hMSCs proliferated readily, whereas a general reduction of BrdU-labeled cells was observed in cocultures. Globally, upon extending time periods, interactive coculture combinations of hMSCs with hOAs reduced both osteogenic gene and stem cell marker transcription in hMSCs, a phenomenon appearing less pronounced by combining hMSCs with hPDLs, such that the observed effects in terms of proliferation and gene expression followed the same ranking: hOAs>hGFs>hPDLs. Vice versa, in interactive hMSC cocultures, the cell survival rate was significantly increased, irrespective from the combined coculture cell counterpart. Our results show for the first time that behavior of hMSCs reflected by proliferation and gene expression was governed by interaction with various oral cells in a cell-type-discriminative manner. In addition, hMSC coculture restrains apoptosis, such that influences on cell behavior appear as a crosstalk. In summary, interactive cocultures render the basis for a prospective prediction of mutual cell behavior in hMSC-based oral tissue regeneration disclosing that oral cells shift hMSC behavior from proliferation to differentiation and apoptosis-repressing features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.