Abstract

Porphyromonas gingivalis is an oral pathogen strongly associated with destruction of the tooth-supporting tissues in human periodontitis. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDLF) are functionally different cell types in the periodontium that can participate in the host immune response in periodontitis. This study aimed to investigate the effects of viable P. gingivalis on the expression of genes associated with inflammation and bone degradation by these fibroblast subsets. Primary human GF and PDLF from six healthy donors were challenged in vitro with viable P. gingivalis W83 for 6 h. Gene expression of inflammatory cytokines in GF and PDLF was analyzed using real-time PCR, and protein expression was analyzed using ELISA. Viable P. gingivalis induced a strong in vitro inflammatory response in both GF and PDLF. We found increased gene expression of interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor-alpha, monocyte chemotactic protein-1 and regulated upon activation, normal T-cell expressed and secreted (RANTES). Macrophage colony-stimulating factor was induced and the expression of osteoprotegerin was decreased in GF, but not in PDLF. In nonchallenged cells, a higher level of expression of IL-6 was observed in GF than in PDLF. Between individual donors there was large heterogeneity in responsiveness to P. gingivalis. Also, in each individual, either GF or PDLF was more responsive to P. gingivalis. Considerable heterogeneity in responsiveness to P. gingivalis exists both between GF and PDLF and between individuals, which may be crucial determinants for the susceptibility to develop periodontitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call