Abstract

The past decades have witnessed a dogmatic shift from glia as supporting cells in the nervous system to their active roles in neurocentric functions. Neurons and glia communicate and show bidirectional responses through tripartite synapses. Studies across species indicate that neurotransmitters released by neurons are perceived by glial receptors, which allow for gliotransmitter release. These gliotransmitters can result in activation of neurons via neuronal GPCR receptors. However, studies of these molecular interactions are in their infancy. Caenorhabditis elegans has a conserved neuron-glia architectural repertoire with molecular and functional resemblance to mammals. Further, glia in C. elegans can be manipulated through ablation and mutations allowing for deciphering of glial dependent processes in vivo at single glial resolutions. Here, we will review recent findings from vertebrate and invertebrate organisms with a focus on how C. elegans can be used to advance our understanding of neuron-glia interactions through GPCRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.