Abstract
The development of all vertebrate embryos requires the establishment of a three-dimensional coordinate system in order to pattern embryonic structures and create the complex shape of the adult organism. During the process of gastrulation, the three primary germ layers are created under the guidance of numerous signaling pathways, allowing cells to communicate during development. Cell–cell communication, mediated by receptors of the Notch family, has been shown to be involved in mediating diverse cellular behaviors during development and has been implicated in the regulation of cell fate decisions in both vertebrate and invertebrate organisms. In order to investigate a role for Notch signaling during boundary formation between the mesoderm and endoderm during gastrulation, we manipulated Notch signaling in gastrula stage embryos and examined gene expression in resultant tissues and organs. Our findings demonstrate a much broader role for Notch signaling during germ layer determination than previously reported in a vertebrate organism. Activation of the Notch pathway, specifically in gastrula stage embryos, results in a dramatic decrease in the expression of genes necessary to create many different types of mesodermal tissues while causing a dramatic expansion of endodermal tissue markers. Conversely, temporally controlled suppression of this pathway results in a loss of endodermal cell types and an expansion of molecular markers of mesoderm. Thus, our data are consistent with and significantly extend the implications of prior observations suggesting roles for Notch signaling during germ layer formation and establish an evolutionarily conserved role for Notch signaling in mediating mesoderm–endoderm boundaries during early vertebrate development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.