Abstract
Cadmium (Cd) is associated with male infertility and poor semen quality in humans. Increasing evidence demonstrates that Cd induces testicular germ cell apoptosis in rodent animals. However, the molecular mechanisms of Cd-induced testicular germ cell apoptosis remain poorly understood. In the present study, we investigated the role of endoplasmic reticulum (ER) stress on Cd-evoked germ cell apoptosis in testes. We show that spliced form of XBP-1, the target of the IRE1 pathway, was significantly increased in testes of mice injected with CdCl(2). GRP78, an ER chaperone, and CHOP, a downstream target of the PERK pathway, were upregulated in testes of Cd-treated mice. In addition, acute Cd exposure significantly caused eIF2α and JNK phosphorylation in testes, indicating that the unfolded protein response pathway in testes was activated by Cd. Interestingly, phenylbutyric acid (PBA), an ER chemical chaperone, attenuated Cd-induced ER stress and protected against germ cell apoptosis in testes. In addition, PBA significantly attenuated Cd-evoked release of cytochrome c from mitochondria to cytoplasm in testes. Taken together, these results suggest that crosstalk between ER stress signaling and mitochondrial pathway mediates Cd-induced testicular germ cell apoptosis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have