Abstract

Studies of the evolutionary emergence of the human "chin" have been investigated from a phylogenetic perspective during the later Pleistocene or from a biomechanical perspective across extant primates. Since it was during the Middle and Late Pleistocene that the distinctive human mentum osseum emerged, the relationship between mentum osseum form and resistance to mechanical stress at the mandibular symphysis was examined for forty-two Middle and Late Pleistocene human mandibles. Mentum osseum variation was scored on a five-point ordinal scale (mentum osseum rank). Resistance to bending was represented by second moments of area calculated from symphyseal cross-sections. Relative strength in bending was represented by second moments of area divided by estimated moment arm or beam length. Vertical bending resistance in the coronal plane was maintained across the range of mentum osseum variation within and between later Pleistocene human groups. In contrast, resistance to lateral transverse bending (wishboning) was significantly negatively correlated with the emergence of a protruding mentum osseum. However, Neandertals and early modern humans were equivalent in their abilities to resist this bending regime, while both groups were less resistant in wishboning than earlier archaic humans. In addition, symphyseal inclination, which decreased throughout the later Pleistocene, was highly correlated with mentum osseum rank. Although the overall pattern of differential stasis and change in vertical bending and wishboning resistance at the symphysis is consistent with aspects of the current biomechanical model of the "chin," the decoupling of bending resistance and mentum osseum form in the Late Pleistocene suggests that the evolutionary emergence of the modern human "chin" was at least partly independent of the biomechanical demands placed on the symphysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call