Abstract
Multilayer piezoelectric ceramic displacement actuators are susceptible to cracking in the region near the edge of the internal electrode, which may cause system damage or failure. In this paper, the stress distribution of a multilayer piezoelectric composite is investigated in a working environment and the optimized geometrical configuration of the piezoelectric layer is obtained. The stress distribution in the structure and the stress concentration near the edge of the internal electrode, induced by non-uniform electric field distribution, are analyzed by moire interferometry experiment and finite element numerical simulation. Based on the above analysis, two optimized geometrical models are presented for the purpose of geometrical configuration selection, with which stress concentration can be reduced significantly while the feasibility of the machining process and the basic structural functions occurring in the conventional model are retained. The numerical results indicate that the maximum stress in the optimized models is effectively diminished compared to the conventional model. For instance, the peak value of the principal stress in the optimized model II is 93.1% smaller than that in the conventional model. It is proved that stress concentration can be effectively relaxed in the latter of the two optimized models and thus the probability of fracture damage can be decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.