Abstract

A viscous fingering of non-Newtonian fluids at a finite viscosity ratio is considered in order to study the effect of non-Newtonian fluid on crossover phenomena. The crossover from the fractal pattern to the dense structure is investigated by using a two-parameter position-space renormalization-group method. The global flow diagrams in two-parameter space are obtained. It is found that there are two nontrivial fixed points: the fractal point and the Eden point. When the viscosity ratio is finite, the pattern must eventually cross over to the dense structure. The dependences of the crossover phenomena on the parameter k, which describes the different non-Newtonian fluids, are shown. It is found that the non-Newtonian fluids have important effects on the fractal point and the crossover line but the crossover exponent is independent of the non-Newtonian property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.