Abstract

We have carried out a systematic study on domain wall (DW) pinning at an anti-notch in a Ni80Fe20 nanowire. Micromagnetic studies reveal that the potential polarity experienced by the DW at the anti-notch is a function of both DW chirality and anti-notch geometry. A transition in the potential disruption experienced by the DW is observed when the anti-notch height-to-width ratio (HAN/WAN) is 2. This transition is due to the relative orientation of the spins in the anti-notch with respect to the transverse component of the DW. When the anti-notch acts as a potential barrier, the DW undergoes damped oscillations prior to coming to an equilibrium position. The equilibrium position is a strong function of the anti-notch dimensions when the HAN/WAN ratio <2 and is constant for HAN/WAN ⩾ 2. The effect of the relative orientation between the spins in the anti-notch and the transverse component of the DW on the shape of the potential is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.