Abstract

The Stokes paradox, that moving a disk at finite velocity through an infinite two-dimensional (2D) viscous fluid requires no force, leads, via the Einstein relation, to an infinite diffusion coefficient D for the disk. Saffman and Delbrück proposed that if the 2D fluid is a thin film immersed in a 3D viscous medium, then the film should behave as if it were of finite size, and D∼ -ln(aη'), where a is the inclusion radius and η' is the viscosity of the 3D medium. By studying the Brownian motion of islands in freely suspended smectic liquid crystal films a few molecular layers thick, we verify this dependence using no free parameters, and confirm the subsequent prediction by Hughes, Pailthorpe, and White of a crossover to 3D Stokes-like behavior when the diffusing island is sufficiently large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.