Abstract

The study aimed to investigate the consistency and diversity between metabolic and structural brain networks at individual level constructed with divergence-based method in healthy Chinese population. The 18F-FDG PET and T1-weighted images of brain were collected from 209 healthy participants. The Jensen-Shannon divergence (JSD) was used to calculate metabolic or structural connectivities between any pair of brain regions and then individual brain networks were constructed. The global and regional topological properties of both networks were analyzed with graph theoretical analysis. Regional properties including nodal efficiency, degree, and betweenness centrality were used to define hub regions of networks. Cross-modality similarity of brain connectivity was analyzed with differential power (DP) analysis. The default mode network (DMN) had the largest number of brain connectivities with high DP values. The small-worldness indexes of metabolic and structural networks in all participants were greater than 1. The structural network showed higher assortativity and local efficiency than metabolic network, while hierarchy and global efficiency were greater in the metabolic network (all P < 0.001). Most of hubs in both networks were symmetrically spatial distributed in the regions of the DMN and subcortical nuclei including thalamus and amygdala, etc. The human brain presented small-world architecture both in perspective of individual metabolic and structural networks. There was a structural substrate that supported the brain to globally and efficiently integrate and process metabolic interaction across brain regions. The cross-modality cooperation or specialization in both networks might imply mechanisms of achieving higher-order brain functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call