Abstract

Background: Changes in the metabolic and structural brain networks in mild cognitive impairment (MCI) have been widely researched. However, few studies have compared the differences in the topological properties of the two brain networks assessed using magnetic resonance imaging (MRI) and fluoro-deoxyglucose positron emission tomography (FDG-PET) in patients with MCI. Methods: This study included 137 patients with MCI and 80 healthy controls (HCs). Sequential interictal scans were performed using FDG-PET and MRI. The MCI metabolic and structural brain networks were constructed according to the standardized uptake value ratio (SUVR) obtained using FDG-PET and gray matter volume obtained using MRI. The permutation test was used to compare the network parameters (characteristic path length, clustering coefficient, local efficiency, and global efficiency) between the two groups. Partial Pearson’s correlation analysis was used to calculate the correlations of the changes in gray matter volume and glucose intake in the key brain regions in MCI with the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-cog) sub-item scores. Results: Significant changes in the brain network parameters (longer characteristic path length, larger clustering coefficient, and lower local efficiency and global efficiency) were greater in the structural network than in the metabolic network (longer characteristic path length) in MCI patients than in HCs. We obtained the key brain regions by scanning the hubs and found that the betweenness centrality of the right calcarine fissure and its surrounding cortex (CAL.R), left lingual gyrus (LING.L), and left globus pallidus (PAL.L) differed significantly between HCs and patients with MCI in both structural and metabolic networks (all p<0.05). The volume of gray matter atrophy in the PAL.L was significantly positively correlated with comprehension of spoken language (p=0.024) and word-finding difficulty in spontaneous speech item scores (p=0.007) in the ADAS-cog. Glucose intake in the three key brain regions (CAL.R, LING.L, and PAL.L) was significantly negatively correlated with remembering test instructions items in ADAS-cog (p=0.020, p=0.014, and p=0.008, respectively). Conclusion: MRI brain networks showed more changes than FDG-PET brain networks in patients with MCI. Some brain regions with significant changes in betweenness centrality in both structural and metabolic networks were associated with MCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call