Abstract

For urban agglomerations in the bay area, which concentrate multiple environmental elements and intense anthropogenic activities, comprehensive control of nitrogen pollution is particularly challenging due to diverse cross-media migration and transformation forms of nitrogen pollutants. Existing studies on urban nitrogen metabolism mainly focused on quantification of nitrogen flux, without systematic consideration of physiochemical changes of nitrogen between environmental media. This study conducted a dynamic simulation of nitrogen cross-media metabolism in urban agglomeration over 30 consecutive years, and recognized the types, quantities, and trends of cross-media transfer of nitrogen pollution as well as pollution control paths based on ecological network analysis and scenario analysis. Taking the Guangdong-Hong Kong-Macao Greater Bay Area as the case, results show that during its fast-urbanized stage in 1989–2018, more than 25% of the total nitrogen pollution emissions were transferred from other media. The higher degree of imbalance between the socioeconomic system and the soil in the nitrogen metabolic network emphasizes the increased pressure and necessity of pollution control of nitrogen in the solid state with urban development. Promoting fertilizer reduction and sludge land use are priority paths for collaborative control of cross-media nitrogen pollution. The study provides methods to systematically analyze the features of cross-media transfer of nitrogen pollution at the city level, and accordingly propose paths aiming at sustainable urban nitrogen management with multi-media integrity and synergy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call